Cyclic di-AMP Acts as an Extracellular Signal That Impacts Bacillus subtilis Biofilm Formation and Plant Attachment

نویسندگان

  • Loni Townsley
  • Sarah M Yannarell
  • Tuanh Ngoc Huynh
  • Joshua J Woodward
  • Elizabeth A Shank
چکیده

There is a growing appreciation for the impact that bacteria have on higher organisms. Plant roots often harbor beneficial microbes, such as the Gram-positive rhizobacterium Bacillus subtilis, that influence their growth and susceptibility to disease. The ability to form surface-attached microbial communities called biofilms is crucial for the ability of B. subtilis to adhere to and protect plant roots. In this study, strains harboring deletions of the B. subtilis genes known to synthesize and degrade the second messenger cyclic di-adenylate monophosphate (c-di-AMP) were examined for their involvement in biofilm formation and plant attachment. We found that intracellular production of c-di-AMP impacts colony biofilm architecture, biofilm gene expression, and plant attachment in B. subtilis We also show that B. subtilis secretes c-di-AMP and that putative c-di-AMP transporters impact biofilm formation and plant root colonization. Taken together, our data describe a new role for c-di-AMP as a chemical signal that affects important cellular processes in the environmentally and agriculturally important soil bacterium B. subtilis These results suggest that the "intracellular" signaling molecule c-di-AMP may also play a previously unappreciated role in interbacterial cell-cell communication within plant microbiomes.IMPORTANCE Plants harbor bacterial communities on their roots that can significantly impact their growth and pathogen resistance. In most cases, however, the signals that mediate host-microbe and microbe-microbe interactions within these communities are unknown. A detailed understanding of these interaction mechanisms could facilitate the manipulation of these communities for agricultural or environmental purposes. Bacillus subtilis is a plant-growth-promoting bacterium that adheres to roots by forming biofilms. We therefore began by exploring signals that might impact its biofilm formation. We found that B. subtilis secretes c-di-AMP and that the ability to produce, degrade, or transport cyclic di-adenylate monophosphate (c-di-AMP; a common bacterial second messenger) affects B. subtilis biofilm gene expression and plant attachment. To our knowledge, this is the first demonstration of c-di-AMP impacting a mutualist host-microbe association and suggests that c-di-AMP may function as a previously unappreciated extracellular signal able to mediate interactions within plant microbiomes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second Messenger Signaling in Bacillus subtilis: Accumulation of Cyclic di-AMP Inhibits Biofilm Formation

The Gram-positive model organism Bacillus subtilis produces the essential second messenger signaling nucleotide cyclic di-AMP. In B. subtilis and other bacteria, c-di-AMP has been implicated in diverse functions such as control of metabolism, cell division and cell wall synthesis, and potassium transport. To enhance our understanding of the multiple functions of this second messenger, we have s...

متن کامل

Functional characterization of core components of the Bacillus subtilis cyclic-di-GMP signaling pathway.

Bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) is an intracellular second messenger that regulates adaptation processes, including biofilm formation, motility, and virulence in Gram-negative bacteria. In this study, we have characterized the core components of a c-di-GMP signaling pathway in the model Gram-positive bacterium Bacillus subtilis. Specifically, we have directly identified and characteri...

متن کامل

Functional analysis of the protein Veg, which stimulates biofilm formation in Bacillus subtilis.

Biofilm is a complex aggregate of cells that adhere to each other and produce an extracellular matrix. In Bacillus subtilis, an extracellular polysaccharide (EPS) and amyloid fiber (TasA), synthesized by the epsA-epsO and tapA-sipW-tasA operons, respectively, are the primary components of the extracellular matrix. In the current study, we investigated the functional role of the previously uncha...

متن کامل

Alternative modes of biofilm formation by plant-associated Bacillus cereus

The ability to form multicellular communities known as biofilms is a widespread adaptive behavior of bacteria. Members of the Bacillus group of bacteria have been found to form biofilms on plant roots, where they protect against pathogens and promote growth. In the case of the model bacterium Bacillus subtilis the genetic pathway controlling biofilm formation and the production of an extracellu...

متن کامل

Engineering of Bacillus subtilis strains to allow rapid characterization of heterologous diguanylate cyclases and phosphodiesterases.

Microbial processes, including biofilm formation, motility, and virulence, are often regulated by changes in the available concentration of cyclic dimeric guanosine monophosphate (c-di-GMP). Generally, high c-di-GMP concentrations are correlated with decreased motility and increased biofilm formation and low c-di-GMP concentrations are correlated with an increase in motility and activation of v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018